Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.920
Filtrar
1.
Probl Endokrinol (Mosk) ; 70(1): 30-37, 2024 Feb 28.
Artigo em Russo | MEDLINE | ID: mdl-38433539

RESUMO

Primary glucocorticoid resistance (OMIM 615962) is a rare endocrinologic condition caused by resistance of the human glucocorticoid receptor (hGR) to glucocorticoids (GR) and characterised by general or partial insensitivity of target organs to GK. Compensatory activation of hypothalamic-pituitary-andrenal axis results in development of a various pathological conditions caused by overstimulation of adrenal glands. Clinical spectrum may range from asymptomatic cases to severe cases of mineralocorticoid and/or androgen excess. At present time, primary generalized glucocorticoid resistance has been exclusively associated with defects in the NR3C1 gene. Here, we present a case report of an adolescent patient with clinical presentation of glucocorticoid resistance confirmed by detailed endocrinologic evaluation but no confirmed mutations in the NR3C1 gene.


Assuntos
Erros Inatos do Metabolismo , Receptores de Glucocorticoides , Receptores de Glucocorticoides/deficiência , Adolescente , Humanos , Receptores de Glucocorticoides/genética , Glucocorticoides/uso terapêutico , Glândulas Suprarrenais , Erros Inatos do Metabolismo/genética , Doenças Raras
2.
Arq Neuropsiquiatr ; 82(2): 1-4, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38395422

RESUMO

Carnitine palmitoyltransferase II (CPT II) deficiency is an autosomal recessive inherited disorder related to lipid metabolism affecting skeletal muscle. The first cases of CPT II deficiency causing myopathy were reported in 1973. In 1983, Werneck et al published the first two Brazilian patients with myopathy due to CPT II deficiency, where the biochemical analysis confirmed deficient CPT activity in the muscle of both cases. Over the past 40 years since the pioneering publication, clinical phenotypes and genetic loci in the CPT2 gene have been described, and pathogenic mechanisms have been better elucidated. Genetic analysis of one of the original cases disclosed compound heterozygous pathogenic variants (p.Ser113Leu/p.Pro50His) in the CPT2 gene. Our report highlights the historical aspects of the first Brazilian publication of the myopathic form of CPT II deficiency and updates the genetic background of this pioneering publication.


Deficiência de carnitina palmitoiltransferase II (CPT II) é uma desordem de herança autossômica recessiva relacionada com o metabolismo do lipídio afetando músculo esquelético. Os primeiros dois casos de deficiência de CPT II causando miopatia foram relatados em 1973. Em 1983, Werneck et al. publicaram os primeiros pacientes brasileiros com miopatia por deficiência de CPT II, nos quais a análise bioquímica confirmou a atividade deficiente da CPT nos músculos em ambos os casos. Após 40 anos desde a publicação pioneira, fenótipos clínicos e loci genético no gene CPT2 foram descritos, bem com os mecanismos patológicos foram melhor elucidados. A análise genética de um dos casos da publicação original apresentou variantes patogênicas em heterozigose composta (p.Ser113Leu/p.Pro50His) no gene CPT2. O nosso relato destaca os aspectos históricos da primeira publicação brasileira da forma miopática da deficiência de CPT II e atualiza as bases genéticas dessa publicação pioneira.


Assuntos
Carnitina O-Palmitoiltransferase/deficiência , Erros Inatos do Metabolismo , Doenças Musculares , Humanos , Carnitina O-Palmitoiltransferase/genética , Carnitina O-Palmitoiltransferase/metabolismo , Brasil , Doenças Musculares/genética , Doenças Musculares/patologia , Erros Inatos do Metabolismo/genética , Erros Inatos do Metabolismo/metabolismo , Erros Inatos do Metabolismo/patologia , Mutação
3.
Arch Pediatr ; 31(1): 85-88, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38168614

RESUMO

The cases were a pair of siblings with a carnitine palmitoyltransferase (CPT2) deficiency detected by tandem mass spectrometry. Their C16 and C18:1 levels were both within the normal range, while C0 was low, and the (C16+C18:1)/C2 ratio was high. Following genetic testing, a novel CPT2 gene mutation was identified in both patients. The male patient had a normal growth rate during 5 years of follow-up after treatment. By contrast, the female patient did not take l-carnitine supplements and died after an infectious disease-associated illness when she was 1 year old. These data emphasize the need to raise awareness about CPT2 deficiency so as to correctly diagnose and accurately manage the disease.


Assuntos
Carnitina O-Palmitoiltransferase , Erros Inatos do Metabolismo , Feminino , Humanos , Lactente , Masculino , Carnitina , Carnitina O-Palmitoiltransferase/genética , Erros Inatos do Metabolismo/diagnóstico , Erros Inatos do Metabolismo/genética , Mutação , Pré-Escolar
4.
BMC Public Health ; 24(1): 222, 2024 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-38238734

RESUMO

BACKGROUND: Many people suffer from body and breath malodour syndromes. One of these is trimethylaminuria, a condition characterized by excretion in breath and bodily fluids of trimethylamine, a volatile and odorous chemical that has the smell of rotting fish. Trimethylaminuria can be primary, due to mutations in the gene encoding flavin-containing monooxygenase 3, or secondary, due to various causes. To gain a better understanding of problems faced by United Kingdom residents affected by body and breath malodour conditions, we conducted a survey. METHODS: Two anonymous online surveys, one for adults and one for parents/guardians of affected children, were conducted using the Opinio platform. Participants were invited via a trimethylaminuria advisory website. Questions were a mix of dropdown, checkbox and open-ended responses. Forty-four adults and three parents/guardians participated. The dropdown and checkbox responses were analysed using the Opinio platform. RESULTS: All participants reported symptoms of body/breath odour. However, not all answered every question. Twenty-three respondents experienced difficulties in being offered a diagnostic test for trimethylaminuria. Problems encountered included lack of awareness of the disorder by medical professionals and reluctance to recognise symptoms. Of those tested, 52% were diagnosed with trimethylaminuria. The main problems associated with living with body/breath malodours were bullying, harassment and ostracism in either the workplace (90%) or in social settings (88%). All respondents thought their condition had disadvantaged them in their daily lives. Open-ended responses included loss of confidence, stress, exclusion, isolation, loneliness, depression and suicidal thoughts. Respondents thought their lives could be improved by greater awareness and understanding of malodour conditions by medical professionals, employers and the general public, and appreciation that the malodour was due to a medical condition and not their fault. CONCLUSIONS: Breath and body malodour conditions can cause immense hardship and distress, both mentally and socially, having devastating effects on quality of life. It would be advantageous to establish a standardised pathway from primary care to a specialist unit with access to a robust and reliable test and diagnostic criteria. There is a need to recognise malodour disorders as a disability, giving affected individuals the same rights as those with currently recognised disabilities.


Assuntos
Erros Inatos do Metabolismo , Metilaminas/urina , Qualidade de Vida , Adulto , Criança , Animais , Humanos , Erros Inatos do Metabolismo/diagnóstico , Erros Inatos do Metabolismo/genética , Odorantes , Ansiedade
5.
Mol Genet Metab ; 141(1): 108098, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38061323

RESUMO

BACKGROUND: Inborn errors of metabolism (IEMs) frequently result in progressive and irreversible clinical consequences if not be diagnosed or treated timely. The tandem mass spectrometry (MS/MS)-based newborn screening (NBS) facilitates early diagnosis and treatment of IEMs. The aim of this study was to determine the characteristics of IEMs and the successful deployment and application of MS/MS screening over a 19-year time period in Shanghai, China, to inform national NBS policy. METHODS: The amino acids and acylcarnitines in dried blood spots from 1,176,073 newborns were assessed for IEMs by MS/MS. The diagnosis of IEMs was made through a comprehensive consideration of clinical features, biochemical performance and genetic testing results. The levels of MS/MS testing parameters were compared between various IEM subtypes and genotypes. RESULTS: A total of 392 newborns were diagnosed with IEMs from January 2003 to June 2022. There were 196 newborns with amino acid disorders (50.00%, 1: 5910), 115 newborns with organic acid disorders (29.59%, 1: 10,139), and 81 newborns with fatty acid oxidation disorders (20.41%; 1:14,701). Phenylalanine hydroxylase deficiency, methylmalonic acidemia and primary carnitine deficiency were the three most common disorders. Some hotspot variations in eight IEM genes (PAH, SLC22A5, MMACHC, MMUT, MAT1A, MCCC2, ACADM, ACAD8), 35 novel variants and some genotype-biochemical phenotype associations were identified. CONCLUSIONS: A total of 28 types of IEMs were identified, with an overall incidence of 1: 3000 in Shanghai, China. Our study offered clinical guidance for the implementation of MS/MS-based NBS and genetic counseling for IEMs in this city.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos , Erros Inatos do Metabolismo , Humanos , Recém-Nascido , Espectrometria de Massas em Tandem/métodos , Erros Inatos do Metabolismo/diagnóstico , Erros Inatos do Metabolismo/epidemiologia , Erros Inatos do Metabolismo/genética , China/epidemiologia , Triagem Neonatal/métodos , Membro 5 da Família 22 de Carreadores de Soluto , Oxirredutases/metabolismo
7.
Methods Mol Biol ; 2745: 191-210, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38060187

RESUMO

Inborn errors of metabolism (IEM) are a group of about 500 rare genetic diseases with large diversity and complexity due to number of metabolic pathways involved in. Establishing a correct diagnosis and identifying the specific clinical phenotype is consequently a difficult task. However, an inclusive diagnosis able in capturing the different clinical phenotypes is mandatory for successful treatment. However, in contrast with Garrod's basic assumption "one-gene one-disease," no "simple" correlation between genotype-phenotype can be vindicated in IEMs. An illustrative example of IEM is Phenylketonuria (PKU), an autosomal recessive inborn error of L-phenylalanine (Phe) metabolism, ascribed to variants of the phenylalanine hydroxylase (PAH) gene encoding for the enzyme complex phenylalanine-hydroxylase. Blood values of Phe allow classifying PKU into different clinical phenotypes, albeit the participation of other genetic/biochemical pathways in the pathogenetic mechanisms remains elusive. Indeed, it has been shown that the most serious complications, such as cognitive impairment, are not only related to the gene dysfunction but also to the patient's background and the participation of several nongenetic factors.Therefore, a Systems Biology-based strategy is required in addressing IEM complexity, and in identifying the interplay between different pathways in shaping the clinical phenotype. Such an approach should entail the concerted investigation of genomic, transcriptomics, proteomics, metabolomics profiles altogether with phenylalanine and amino acids metabolism. Noticeably, this "omic" perspective could be instrumental in planning personalized treatment, tailored accordingly to the disease profile and prognosis.


Assuntos
Erros Inatos do Metabolismo , Fenilalanina Hidroxilase , Fenilcetonúrias , Humanos , Fenilcetonúrias/diagnóstico , Fenilcetonúrias/genética , Fenilcetonúrias/metabolismo , Erros Inatos do Metabolismo/diagnóstico , Erros Inatos do Metabolismo/genética , Fenilalanina Hidroxilase/genética , Fenótipo , Fenilalanina/genética , Fenilalanina/metabolismo
8.
Metabolism ; 150: 155738, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37981189

RESUMO

Inborn errors of metabolism (IEMs) are a group of more than 1000 inherited diseases that are individually rare but have a cumulative global prevalence of 50 per 100,000 births. Recently, it has been recognized that like common diseases, patients with rare diseases can greatly vary in the manifestation and severity of symptoms. Here, we review omics-driven approaches that enable an integrated, holistic view of metabolic phenotypes in IEM patients. We focus on applications of Constraint-based Reconstruction and Analysis (COBRA), a widely used mechanistic systems biology approach, to model the effects of inherited diseases. Moreover, we review evidence that the gut microbiome is also altered in rare diseases. Finally, we outline an approach using personalized metabolic models of IEM patients for the prediction of biomarkers and tailored therapeutic or dietary interventions. Such applications could pave the way towards personalized medicine not just for common, but also for rare diseases.


Assuntos
Erros Inatos do Metabolismo , Humanos , Erros Inatos do Metabolismo/genética , Doenças Raras/genética , Medicina de Precisão , Fenótipo , Análise de Sistemas
9.
Clin Biochem ; 123: 110703, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38097032

RESUMO

Chronic kidney disease (CKD) affects over 0.5 billion people worldwide across their lifetimes. Despite a growingly ageing world population, an increase in all-age prevalence of kidney disease persists. Adult-onset forms of kidney disease often result from lifestyle-modifiable metabolic illnesses such as type 2 diabetes. Pediatric and adolescent forms of renal disease are primarily caused by morphological abnormalities of the kidney, as well as immunological, infectious and inherited metabolic disorders. Alterations in energy metabolism are observed in CKD of varying causes, albeit the molecular mechanisms underlying pathology are unclear. A systematic indexing of metabolites identified in plasma and urine of patients with kidney disease alongside disease enrichment analysis uncovered inborn errors of metabolism as a framework that links features of adult and pediatric kidney disease. The relationship of genetics and metabolism in kidney disease could be classified into three distinct landscapes: (i) Normal genotypes that develop renal damage because of lifestyle and / or comorbidities; (ii) Heterozygous genetic variants and polymorphisms that result in unique metabotypes that may predispose to the development of kidney disease via synergistic heterozygosity, and (iii) Homozygous genetic variants that cause renal impairment by perturbing metabolism, as found in children with monogenic inborn errors of metabolism. Interest in the identification of early biomarkers of onset and progression of CKD has grown steadily in the last years, though it has not translated into clinical routine yet. This systematic review indexes findings of differential concentration of metabolites and energy pathway dysregulation in kidney disease and appraises their potential use as biomarkers.


Assuntos
Diabetes Mellitus Tipo 2 , Erros Inatos do Metabolismo , Insuficiência Renal Crônica , Adulto , Adolescente , Humanos , Criança , Rim/metabolismo , Insuficiência Renal Crônica/genética , Metabolômica , Biomarcadores , Erros Inatos do Metabolismo/genética
11.
Cell Rep ; 42(11): 113214, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-37917582

RESUMO

Phosphatidylglycerol (PG) is a mitochondrial phospholipid required for mitochondrial cristae structure and cardiolipin synthesis. PG must be remodeled to its mature form at the endoplasmic reticulum (ER) after mitochondrial biosynthesis to achieve its biological functions. Defective PG remodeling causes MEGDEL (non-alcohol fatty liver disease and 3-methylglutaconic aciduria with deafness, encephalopathy, and Leigh-like) syndrome through poorly defined mechanisms. Here, we identify LPGAT1, an acyltransferase that catalyzes PG remodeling, as a candidate gene for MEGDEL syndrome. We show that PG remodeling by LPGAT1 at the ER is closely coordinated with mitochondrial transport through interaction with the prohibitin/TIMM14 mitochondrial import motor. Accordingly, ablation of LPGAT1 or TIMM14 not only causes aberrant fatty acyl compositions but also ER retention of newly remodeled PG, leading to profound loss in mitochondrial crista structure and respiration. Consequently, genetic deletion of the LPGAT1 in mice leads to cardinal features of MEGDEL syndrome, including 3-methylglutaconic aciduria, deafness, dilated cardiomyopathy, and premature death, which are highly reminiscent of those caused by TIMM14 mutations in humans.


Assuntos
Surdez , Perda Auditiva Neurossensorial , Erros Inatos do Metabolismo , Humanos , Animais , Camundongos , Fosfatidilgliceróis , Perda Auditiva Neurossensorial/genética , Erros Inatos do Metabolismo/genética , Surdez/genética , Cardiolipinas
12.
Eur J Med Genet ; 66(12): 104885, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37979716

RESUMO

BACKGROUND: Malonyl-CoA decarboxylase deficiency (MLYCDD) is an ultra-rare inherited metabolic disorder, characterized by multi-organ involvement manifesting during the first few months of life. Our aim was to describe the clinical, biochemical, and genetic characteristics of patients with later-onset MLYCDD. METHODS: Clinical and biochemical characteristics of two patients aged 48 and 29 years with a confirmed molecular diagnosis of MLYCDD were examined. A systematic review of published studies describing the characteristics of cardiovascular involvement of patients with MLYCDD was performed. RESULTS: Two patients diagnosed with MLYCDD during adulthood were identified. The first presented with hypertrophic cardiomyopathy and ventricular pre-excitation and the second with dilated cardiomyopathy (DCM) and mild-to-moderate left ventricular (LV) systolic dysfunction. No other clinical manifestation typical of MLYCDD was observed. Both patients showed slight increase in malonylcarnitine in their plasma acylcarnitine profile, and a reduction in malonyl-CoA decarboxylase activity. During follow-up, no deterioration of LV systolic function was observed. The systematic review identified 33 individuals with a genetic diagnosis of MLYCDD (median age 6 months [IQR 1-12], 22 males [67%]). Cardiovascular involvement was observed in 64% of cases, with DCM the most common phenotype. A modified diet combined with levocarnitine supplementation resulted in the improvement of LV systolic function in most cases. After a median follow-up of 8 months, 3 patients died (two heart failure-related and one arrhythmic death). CONCLUSIONS: For the first time this study describes a later-onset phenotype of MLYCDD patients, characterized by single-organ involvement, mildly reduced enzyme activity, and a benign clinical course.


Assuntos
Cardiomiopatia Dilatada , Cardiomiopatia Hipertrófica , Erros Inatos do Metabolismo , Masculino , Humanos , Adulto , Lactente , Ácido Metilmalônico , Erros Inatos do Metabolismo/genética
13.
Artigo em Alemão | MEDLINE | ID: mdl-37828293

RESUMO

For more than five decades, all newborns in Germany have been offered a screening examination for the early detection of congenital treatable diseases. Since its inception, about 35 million children have been screened in this way.Originally, screening exams only included early detection of phenylketonuria, which, without timely treatment, would lead to mental retardation that could no longer be corrected. The bacteriological Guthrie test allowed the detection of elevated concentrations of phenylalanine. The methods used today are the result of decades of development. They have been expanded to include tests to determine enzyme activities, immunoassays for the early detection of important hormonal disorders such as congenital hypothyroidism, and high-pressure liquid chromatography for the diagnosis of pathologic hemoglobins. The very sophisticated tandem mass spectrometry enables the simultaneous detection of amino acid and fatty acid compounds. Steroids can also be identified. The specificity can be further increased by combining tandem mass spectrometry with chromatographic pre-separation. In recent years, chemical-analytical analyses have been supplemented by genetic diagnostic methods such as quantitative or qualitative polymerase chain reaction (PCR).The current state of laboratory technology is by no means final. Both classical analytics and especially genetic methods are facing further rapid development. Although the expansion of screening is also a consequence of technical development, the inclusion of further congenital diseases is fundamentally dependent on the given therapy. But it is precisely here that many innovations are currently being investigated. Gene therapy is at the forefront of interest.


Assuntos
Erros Inatos do Metabolismo , Fenilcetonúrias , Criança , Recém-Nascido , Humanos , Triagem Neonatal/métodos , Erros Inatos do Metabolismo/diagnóstico , Erros Inatos do Metabolismo/genética , Erros Inatos do Metabolismo/terapia , Alemanha , Fenilcetonúrias/diagnóstico , Fenilcetonúrias/genética , Diagnóstico Precoce
14.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 40(11): 1377-1381, 2023 Nov 10.
Artigo em Chinês | MEDLINE | ID: mdl-37906145

RESUMO

OBJECTIVE: To explore the clinical features and genetic basis for a child with 3-methylglutaconic aciduria type VII. METHODS: A child who was diagnosed at the Gansu Provincial Maternity and Child Health Care Hospital on August 9, 2019 was selected as the study subject. Clinical data of the child, including urine gas chromatography and mass spectrometry, were collected. The child and her parents were subjected to whole exome sequencing. RESULTS: The child, a female neonate, had presented mainly with intermittent skin cyanosis, convulsions, hypomagnesemia, apnea, neutropenia after birth. Her urine 3-methylpentenedioic acid has increased to 17.53 µmol/L. DNA sequencing revealed that she has harbored compound heterozygous variants of the CLPB gene, namely c.1016delT (p.L339Rfs*5) and c.1087A>G (p.R363G), which were respectively inherited from her mother and father. Both variants were unreported previously. Based on the standards from the American College of Medical Genetics and Genomics (ACMG), the variants were respectively predicted to be pathogenic and likely pathogenic. CONCLUSION: The child was diagnosed with 3-methylglutenedioic aciduria type VII. Discovery of the c.1016delT and c.1087A>G variants has enriched the mutational spectrum of the CLPB gene.


Assuntos
Erros Inatos do Metabolismo , Neutropenia , Feminino , Humanos , Recém-Nascido , Gravidez , Sequência de Bases , Erros Inatos do Metabolismo/genética , Erros Inatos do Metabolismo/diagnóstico , Mutação , Neutropenia/genética , Análise de Sequência de DNA
15.
Mol Genet Metab ; 140(3): 107693, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37716025

RESUMO

Newborn screening (NBS) began a revolution in the management of biochemical genetic diseases, greatly increasing the number of patients for whom dietary therapy would be beneficial in preventing complications in phenylketonuria as well as in a few similar disorders. The advent of next generation sequencing and expansion of NBS have markedly increased the number of biochemical genetic diseases as well as the number of patients identified each year. With the avalanche of new and proposed therapies, a second wave of options for the treatment of biochemical genetic disorders has emerged. These therapies range from simple substrate reduction to enzyme replacement, and now ex vivo gene therapy with autologous cell transplantation. In some instances, it may be optimal to introduce nucleic acid therapy during the prenatal period to avoid fetopathy. However, as with any new therapy, complications may occur. It is important for physicians and other caregivers, along with ethicists, to determine what new therapies might be beneficial to the patient, and which therapies have to be avoided for those individuals who have less severe problems and for which standard treatments are available. The purpose of this review is to discuss the "Standard" treatment plans that have been in place for many years and to identify the newest and upcoming therapies, to assist the physician and other healthcare workers in making the right decisions regarding the initiation of both the "Standard" and new therapies. We have utilized several diseases to illustrate the applications of these different modalities and discussed for which disorders they may be suitable. The future is bright, but optimal care of the patient, including and especially the newborn infant, requires a deep knowledge of the disease process and careful consideration of the necessary treatment plan, not just based on the different genetic defects but also with regards to different variants within a gene itself.


Assuntos
Erros Inatos do Metabolismo , Fenilcetonúrias , Recém-Nascido , Lactente , Gravidez , Feminino , Humanos , Erros Inatos do Metabolismo/genética , Erros Inatos do Metabolismo/terapia , Erros Inatos do Metabolismo/diagnóstico , Triagem Neonatal , Fenilcetonúrias/genética , Fenilcetonúrias/terapia , Biologia Molecular , Sequenciamento de Nucleotídeos em Larga Escala
16.
Mol Genet Metab ; 140(3): 107683, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37597335

RESUMO

Kidney disease is a global health burden with high morbidity and mortality. Causes of kidney disease are numerous, extending from common disease groups like diabetes and arterial hypertension to rare conditions including inherited metabolic diseases (IMDs). Given its unique anatomy and function, the kidney is a target organ in about 10% of known IMDs, emphasizing the relevant contribution of IMDs to kidney disease. The pattern of injury affects all segments of the nephron including glomerular disease, proximal and distal tubular damage, kidney cyst formation, built-up of nephrocalcinosis and stones as well as severe malformations. We revised and updated the list of known metabolic etiologies associated with kidney involvement and found 190 relevant IMDs. This represents the 14th of a series of educational articles providing a comprehensive and revised list of metabolic differential diagnoses according to system involvement.


Assuntos
Hipertensão , Nefropatias , Doenças Metabólicas , Erros Inatos do Metabolismo , Humanos , Erros Inatos do Metabolismo/diagnóstico , Erros Inatos do Metabolismo/genética , Doenças Metabólicas/genética , Doenças Metabólicas/diagnóstico , Rim
17.
Harefuah ; 162(6): 344-351, 2023 Jun.
Artigo em Hebraico | MEDLINE | ID: mdl-37394435

RESUMO

INTRODUCTION: Inborn-Errors of Metabolism (IEM) are genetic disorders resulting from mutations in genes encoding proteins involved in biochemical-metabolic pathways. However, some IEMs lack specific biochemical markers. Early incorporation of next-generation-sequencing (NGS) including whole exome sequencing (WES) into the diagnostic algorithm of IEMs herein provided, increases diagnostic accuracy, permits genetic counseling and improves therapeutic options. This is exemplified by diseases affecting aminoacyl-tRNA synthetases (ARSs), enzymes involved in protein translation. Recent studies showed that supplementing amino-acids to cell-culture and patients with ARSs deficiencies resulted in improvement of biochemical and clinical parameters, respectively.


Assuntos
Erros Inatos do Metabolismo , Humanos , Erros Inatos do Metabolismo/diagnóstico , Erros Inatos do Metabolismo/genética , Erros Inatos do Metabolismo/terapia , Mutação , Biomarcadores , Aconselhamento Genético , Sequenciamento de Nucleotídeos em Larga Escala/métodos
18.
Zhejiang Da Xue Xue Bao Yi Xue Ban ; 52(2): 169-177, 2023 Apr 25.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-37283101

RESUMO

Renal calculus is a common disease with complex etiology and high recurrence rate. Recent studies have revealed that gene mutations may lead to metabolic defects which are associated with the formation of renal calculus, and single gene mutation is involved in relative high proportion of renal calculus. Gene mutations cause changes in enzyme function, metabolic pathway, ion transport, and receptor sensitivity, causing defects in oxalic acid metabolism, cystine metabolism, calcium ion metabolism, or purine metabolism, which may lead to the formation of renal calculus. The hereditary conditions associated with renal calculus include primary hyperoxaluria, cystinuria, Dent disease, familial hypomagnesemia with hypercalciuria and nephrocalcinosis, Bartter syndrome, primary distal renal tubular acidosis, infant hypercalcemia, hereditary hypophosphatemic rickets with hypercalciuria, adenine phosphoribosyltransferase deficiency, hypoxanthine-guanine phosphoribosyltransferase deficiency, and hereditary xanthinuria. This article reviews the research progress on renal calculus associated with inborn error of metabolism, to provide reference for early screening, diagnosis, treatment, prevention and recurrence of renal calculus.


Assuntos
Cálculos Renais , Erros Inatos do Metabolismo , Nefrocalcinose , Urolitíase , Lactente , Humanos , Hipercalciúria/genética , Cálculos Renais/diagnóstico , Cálculos Renais/genética , Urolitíase/genética , Nefrocalcinose/genética , Erros Inatos do Metabolismo/complicações , Erros Inatos do Metabolismo/genética
19.
Nat Commun ; 14(1): 2028, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-37041140

RESUMO

Mitochondria are critical to cellular and organismal health. To prevent damage, mitochondria have evolved protein quality control machines to survey and maintain the mitochondrial proteome. SKD3, also known as CLPB, is a ring-forming, ATP-fueled protein disaggregase essential for preserving mitochondrial integrity and structure. SKD3 deficiency causes 3-methylglutaconic aciduria type VII (MGCA7) and early death in infants, while mutations in the ATPase domain impair protein disaggregation with the observed loss-of-function correlating with disease severity. How mutations in the non-catalytic N-domain cause disease is unknown. Here, we show that the disease-associated N-domain mutation, Y272C, forms an intramolecular disulfide bond with Cys267 and severely impairs SKD3Y272C function under oxidizing conditions and in living cells. While Cys267 and Tyr272 are found in all SKD3 isoforms, isoform-1 features an additional α-helix that may compete with substrate-binding as suggested by crystal structure analyses and in silico modeling, underscoring the importance of the N-domain to SKD3 function.


Assuntos
Erros Inatos do Metabolismo , Humanos , Lactente , Erros Inatos do Metabolismo/genética , Mitocôndrias , Mutação , Domínios Proteicos , Proteínas de Choque Térmico/metabolismo
20.
BMC Med Genomics ; 16(1): 57, 2023 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-36927542

RESUMO

Inborn errors of metabolism (IEM) can lead to severe motor and neurological developmental disorders and even disability and death in children due to untimely treatment. In this study, we used tandem mass spectrometry (MS/MS) for primary screening and recall of those with positive primary screening for rescreening. Further diagnosis was based on biochemical tests, imaging and clinical presentation as well as accurate genetic testing using multi-gene panel with high-throughput sequencing of 130 IEM-related genes. The screening population was 16,207 newborns born between July 1, 2019, and December 31, 2021. Based on the results, 8 newborns were diagnosed with IEM, constituting a detection rate of 1:2,026. Phenylketonuria was the most common form of IEM. In addition, seven genes associated with IEM were detected in these eight patients. All eight patients received standardized treatment starting in the neonatal period, and the follow-up results showed good growth and development. Therefore, our study suggests that MS/MS rescreening for IEM pathogenic variants in high-risk areas, combined with a sequencing validation strategy, can be highly effective in the early detection of affected children. This strategy, combined with early intervention, can be effective in preventing neonatal morbidity and improving population quality.


Assuntos
Erros Inatos do Metabolismo , Fenilcetonúrias , Criança , Humanos , Recém-Nascido , Espectrometria de Massas em Tandem , Estudos Retrospectivos , Triagem Neonatal/métodos , Erros Inatos do Metabolismo/diagnóstico , Erros Inatos do Metabolismo/genética , Erros Inatos do Metabolismo/terapia , Fenilcetonúrias/diagnóstico , Fenilcetonúrias/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...